Google+

RESSEEPE Project – Sustainable Building Innovations at Coventry University – PCM

Coventry University and the RESSEEPE partners have been very busy over the past few months progressing the RESSEEPE research into the demo site activities phase.  It’s at this point where the practical end of the demonstrations is coming into action and the really exciting work is happening. Having been a part of the project since its initial practical kick off its great to see the technologies explored as a part of the project actually gong onto the buildings. Over the next few weeks a number of articles will be released discussing each of the technologies installed at Coventry University.

IMG_2928

PCM – Sample of the tube form unfixed and loose

The first major works at Coventry consisted of the installation of Phase Change Materials (PCM).  PCM is a passive system, which behaves similar to ice, in that the material ‘freezes’ and melts at a fixed temperature.  The PCM installed in Coventry is a S27 phase change material, which is a salt hydrate that peaks at 27oC.  In reality, the PCM may start the melting process at 25oC and be completely liquid at 29oC.  In reverse, the PCM may show signs of solidification at 29oC and be completely solid at 25oC. 

 

 

The PCM Tubes are installed and respond to the surrounding temperature of the room.  At the beginning of the day, the TubeICE are frozen.  As the room heats up due to body heat, and heat from the sun, the PCM Tubes passively cool the room by absorbing the heat until completely melted. 

PCM Passive System Throughout Day

PCM Passive System Throughout Day

The duration of the cooling effect is dependent on the intensity of the heat being absorbed.  I.e. the PCM will melt quicker if the ambient temperature in the room is 40oC compared to if the temperature is 35oC, much like a block of ice would.  As the temperature cools over night, so does the PCM.  The PCM effectively looses energy to the immediate surroundings, charging for the next day. 

 

PCM - Overnight

PCM Overnight

IMG_2927

PCM bracket System

One of the challenges with installation was due to the unknown entity of the PCM. A number of local contractors were approached to install but were put off by the increased risk factor when dealing with a technology which is very new. Contractors rightly so have to consider the increased level of risk and liability that they will take on when dealing with something they have little precedent or experience in handling. In reality once a contractor had been identified the installation was fairly straight forward. Certain protocols had to be adhered to such as a structural assessment of the space and an asbestos survey, both to ensure that firstly the structure could hold the increased loading of the PCM tubes and secondly to ensure that no surprises were found in regards to asbestos. Both were cleared and the installation was quick and uneventful. As can be seen from the image the PCM tubes were fixed using a standard tube fixing bracket system which was fixed to the underside of the ceiling.

PCM technology was installed within the Architecture Studio and 2 offices within the John Laing Building at Coventry University. The spaces and tubes will be energy monitored over the next year to gather full performance data, which will be objectively compared to controls rooms neighbouring the spaces. Below the PCM tube can be seen in-situ.

IMG_2558

PCM tube in-situ

 

PCM tube in-situ

PCM tube in-situ

Contributors – Danny McGough and PCMproducts

(75)

BIM in a Whole Life Concept

(Exercise support content contained in this article. These articles are developed to support flipped learning approach so some comments are present to direct higher education discussion)

A better understand of BIM considers BIM beyond the concept and design phase of a project. BIM utilised to its best opportunity will consider the whole life of a building, asset or project. The BIM package or Asset Information Model (AIM) can be harnessed to facilitate better data management and data access not only for the design and construction phase but additionally the client and asset/facilities management phase of ownership. And once the building comes to end of life the AIM provides the opportunity to harness valuable asset data to ensure a better informed reuse or demolition phase. This whole life instills a circular strategy in the utilisation of the BIM or AIM.

Flipped session:

Watch these two videos

Discussion:

  • Consider the impact of BIM during the refurbishment of a building or project
  • What are the potential benefits in using or BIM as a process in refurbishment?
  • What are the potential benefits of having an AIM model in regards to the whole life of a building?
  • What specific information could be utilised in the Opex (operational expense, operational expenditure) or ongoing running costs phase of a project by building management teams?
  • What is more important reducing Capex or reducing Opex costs and how does the impact differ depending on stakeholder standpoint?
  • From the videos what impact does a whole life approach have on data retention?
  • What are the issues with multiple sources of information? (The Crossrail article refers to a ‘single source of truth’)
  • Considering previous flipped content on recycling of waste how can an AIM support the process?
  • If using BIM in the future what aspects would you adopt to assist you in a refurbishment project?

 

(452)

Whole Life Approach to BIM part 2

This is a short video I created aimed at providing an introductory awareness of BIM, from zero forwards. This particular video focus on Whole life performance and sustainability. The video was created in 2014. The work has been supported by multiple existing research and statements made by industry and academic individuals which I’ve then collated and interpreted into my own perspective.

Links to Coventry University, where we have a selection of courses that include BIM and Construction – Coventry University – School of Energy, Construction and Environment

(2190)

Whole Life Approach to BIM part 1

This is a short video I created aimed at providing an introductory awareness of BIM, from zero forwards. This particular video focus on Whole Life performance and sustainability. The video was created in 2014. The work has been supported by multiple existing research and statements made by industry and academic individuals which I’ve then collated and interpreted into my own perspective.

Links to Coventry University, where we have a selection of courses that include BIM and Construction – Coventry University – School of Energy, Construction and Environment

(2248)

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close